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ABSTRACT

Uncertain elements must be considered in the mathematical model

of many dynamical systems. The theory associated with additive noise

models is quite advanced, but many control problems are more realistical-

ly modeled as containing uncertain and time varying parameters or gains.
For multiplicative gains of the white noise type, necessary and suf-

ficient conditions for the stability of many of these systems have been
derived previously. In this article, we develop conditions for the

stability of some continuous—time systems containina multiplicative colored
noise.
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In this article we analyze some continuous-time systems

that contain uncertain parameters. The statistical properties

of the uncertain elements are used to determine conditions that

will ~uarantce the stability (in some probabilistic sense) of these

systems. By far , the hulk of the research completed on this

top~ c concerns systems in which the noise terms enter additively

as control or observation noise. Systems in which the noise enters

as a multip lier have been given more attention lately, but the

results obtained so far are quite incomplete. In the following

sections , we make some contributions to this theory .

For linear systems in which the random process enters

additively, the use of a white noise model is well justified ,

especially if state augmentation is used to generate the colored

noise processes required. Even without state augmentation , the

white noise model can often be used to represent wideband processes

because the extra power in the white noise model will be dissi pated

anyway. For multiplicative noise , however , the situation is not

so simple. Using state augmentation and white noise to generate

the required colored noise process leads to a non-linear sy s t em

model which is , in fact , bilinea_r. Without state augmentation ,

the only interpretation of the results is in terms of physical

systems involving very wideband noise processes. The main con-

tribution of this research is the establishment of some criter4

for the stability o the systems described below h-hat explicitly

involve the power and the bandwidth of the colored noise2
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In the following sections of this artiCle , an analysis

progresses from first order systems to higher order systems .

Sufficient and sometimes necessary conditions for the exponential

mean square stability of the null solution are derived. In Section

IV , the damped harmonic oscillator problem is treated in some

detail , and sufficient conditions for the mean square stability

of its null solution are given. The damped harmonic oscillator

problem was chosen because it has received considerable attention

in the literature [1, 2) so results are available for comparison .

It is an example of a system that does not evolve on a solvable

Lie group , and we are not able to duplicate the elegant results

that are often obtainable in those cases.

II. SY STEM DEFINITION:

We will be studying systems of the form :

dx(t) = [A + f(t)B} x(t) (1)

The initial condition is a random variable , A and B

arc constant matrices , and f(.) is a real-valued colored noise

process. The easiest example to visualize is a linear dynamical

system containing a noisy gain in the feedback path , as in Figure

(1). 
-
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INITIAL
CONDITION

I LINEAR DYNAMIC

~~ ~ SYSTEM _ _ _ _  

y ( t )  
-

I (STABLE )

FIGURE 1

MODEL OF LINEAR DYNAMICAL SYSTEM WITH NOISY FEEDBACK GAIN
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One major difficulty in studying and comparing the

results found in the literature is the abundance of concepts and

definitions surrounding the phrase “stochastic stability ”. To

avoid any problems of this kind , only the following types of

stability will be considered here :

1)ef m i t  ion

The zero equilibrium solution of system (1) is said

to possess exponential stability of the pth mean if there exists

po3itive constants a, 3 , and 6, such that Ix(o) < 6 implies that

for all t > 0,

PS p
x(t) . 13 x(0) exp (- at) (2)

p p

where

p p
x (t) 2..~ 

x~~(t)P i ’ l

In this article , the case p 2 will receive the most consideration

and the phrase “exponentially stable in the mean square” will

be used .

I

________ ____________  . _ _  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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III . SCALAR, FIRST ORDER SYSTEMS:

Althoug h first order systems represent only a small

fraction of all interesting dynamical systems , they play an impor-

tant role in the research described below for two reasons.

The formulae can be evaluated easily and provide an example to

follow in the higher dimensional cases , and the formulae found

for the first order case lead to a bound for the mean square

stability of hig her order systems . The detailed consideration of

this case seems warranted.

Colored Noise Results:

It turns out that one can solve first order linear

stochastic differential equations because the solution can be

expressed in terms of a functional of the random processes involved.

[3) That is , suppose f(t) is a scalar function of time . Then the

equation

x = (a + f(t))x x(0) = x0 (3) L.

has for its solution

x(t) = x0 exp (f(a + f(a))da) (4)

Moreover , the mean square of x(t) is g iven by:

I
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E{x(t)x*(t)} = E [exp(2;t + 2ff(a)do))xo
2 

-

= ~
2at E[exp (2ff(a)dc))xo

2 (5)

Furthermore , if f(t) is a Gaussian colored noise process , one can

calculate all of the statistical properties of the exponential

function in (4).

For the purpose of making comparisons with :ater results ,

conditions that guarantee exponential mean square stability are

derived next . Assume now that f(t) is a real-valued zero mean ,

stationary Gaussian random process with autocorrelation function
2 -u It 1-t 2 1

Rf(t1, t 2 ) = e , and define the process

t
t

~~(t) =J f(a)da

Then n (t) is a Gaussian random process with zero mean and auto-

correlation function given by:

R~(t1~ t2) = Rf(t1, t2) * h(t1) * h (t2) (6)

where h(t) is the impulse response of an integrator. ~(t) is

not stationary, for at the very least there are initial transients

in the moments of the process.

- -~ ._ —~~~~~~-~~~~ -~~~~-- --~~. - ~~--——-*  -_ - - - ,_ - - - - - -
.--
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Performing the indicated convolutions in Equation (6),

ari d setting t1 = t
2 

= t , one obtains:

2 ~~
2

R~ (t~ t) = t + — [2e~~
t 

- 2 ] ,  t > 0

Knowing Equation (4), it is straig htforward to calculate criteria

for the exponential stability of the pth mean of the null solution

of System (3). A special case (p = 1) is treated by Brockett

[4, page 58].

Clearly,

x~~(t) = x1’(O) ex p [p f  (a + f ( a ) ) d a ]  (7)

so

E{Ix(t) I~~
} = epat E{e (t))Ix IP (8)

But , ~~(t) is Gaussian , so

(p2/2)R (t,t)
E{eI~~

t)} = e

and the null solu-tion of System (3) is exponentially stable in

the pth  mean if and only if

a + p _— .--<O (9)

- . - ~~~- • — -———  ~ —— —— ~~~~~ -_
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Referring to Figure (2), it is easy to identif y sys tems

t h a t  have rather peculiar properties. That is , in the  reg ion

0 > a > - o f
2 /cl , System (3) is unstable in the p t h  mean for p >

yet almost every sample path has  been shown to approach zero after

l arge time intervals [5]. Moreover , for any combina tion of a,

and a > 0 , System (3) will be unstable in the pth mean if p

i s chosen large enough . Similarly, for any g iven p , a~
2
, and

Ct > 0, Sys tem (3) will be stable in the pth mean if a is chosen

large enough . This last observation has an obvious interpretation ;

for a given feedback noise power , concentrating that power near

zero frequency 1 rovides the most destablizing (in pth mean)

influence. For further comments on the tradeoffs of studying the

behavior of sample paths (almost -sure stability criteria) versus

p t h  mean stability, see Kozin [6, 7 ] .

These results are easily generalized to the case in *

-which f(t) is a band-pass process , whose autocorrelation function

i s  g iven by:

Rf(t1, t
2 ) = exp( -  a I t 1-t 2 1) cos w0(t1 

- t2)

Once aga in , the au tocor re la t ion  f u n c t i o n  of ~(t) is given by:

t t
R (t 1, t2) =

~~~~ 
f  R f (0 11e 2 )d0 1, d0 2

20 f
2 

/terms that grow \
= 

~~2~~ z m in ( t 1,t 2 ) + 
~ 
less than l i nc ar l y l

a \in t 1 o r t 2 /
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Th en , as in Equa t ion ( 8 ) ,

E [xT’(t)] = el~~
t E e Pfl(t) x0~

at (p 2/ 2 ) R ~ (t~ t)e x0

so

~~~ E ( x ~~( t ) ] = 0  4;~ pa + (p
2 / 2 ) ( ~ (Y

f 2 ~ 
< 0

1 + w0 ~ a

(10)

in which case the convergence will be at an exponential rate.

IV. HIGh ER ORDER SYSTEMS:

In Reference [8], Rabotnikov uses Picard expansions to

derive a cri terion for the mean square stability of a single-

inr)u t single-output linear dynamical equation containing a white

noise parameter. The strength of his method lies in the fact

t h a t  the  white noise hypothesis is not used until the end of his

proof , and t h en onl y to solve some integrals involving the noise

au tocorrelation function . Without the white noise assumption ,

the series of integrals obtained is too hard to evaluate. However ,

the example studied in Section I l l  provides a useful bound for

this series of integrals and leads to a simple stability criterion

for  the cxamplc  t r ea t ed  in t h i s  section .

- - - - — —j  ~~---- _ - - _----- -:~~
•---•~~~
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Above , we d er i v e d  a c r i t e r i o n  fo r  ~he e x p o n e n t i a l  m e a n

Squa re  s t a b i l i t y  of System (3). Suppose now t h a t  we t r y  to

d erive that same criterion using the Picard expansion of the

solution.

Le t 2(t) be the solution of the deterministic system

2(t) = - a 2(t) (11)

Z(0) x0

Equation (3) can be rewritten as

x ( t )  Z ( t )  +J  w ( t  - o)f(e)x(c)do (12)
0

where  w ( t )  = e at , the impulse response of System (11).

Repea tedly subs titu t ing Equat ion  ( 12) back in to itself

yields:
* 

x ( t )  2 ( t )  + f e
S( t 0) f ( e ) z ( a ) d a  + fe

(t~~
)
f(a)

cy 
0 0f  ~~~~~~~~~~~~~~~~~~~~

- 

Z ( t )  ÷ f e  
t~ q) f(q)~~(q)~ q ~f ~~l ~~a(t~~ 1)

-a(q1-q 2)e f(q1)f(q2)Z(q 2 )dq 2dq 1

11 3.2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f(q3)Z(q3)dq3dq 2 dq 1 + . . .  ( 1 3 )

___________________________________________________________________________ 



— 
— •

~~ ‘~ —--~ 
-
~~
----—- -—.- — -—-

~~~~~~~~
- 

- -

- 1 3-

(1h ~ c o nv er g e n c e  of th i s se r i e s  is impl ied  by the  a n a l y s i s  of

Ref erence [5], Section 2.1.)

Nex t , by mul tiplying the series in Equation (13) by

i t se l f , E {x 2 ( t ) }  can he expressed as:

E {x 2 ( t ) )  = Z 2(t) + terms involving E{f(t)}

+ Ef Je~ a(t~~ )e a(t P)f(q)f(p)z(q)z(p)dqdIp -

t q 1 -a ( t- q 1) -a(q 1-q 2 )
+ 2 2 ( t )  Ef J a e f ( q 1) f ( q 2 ) Z ( q 2 )d q 2 dq 1

+ terms involving third moments of f(t)

q2 -a(t-q 1) -(q1-q 2)
+ 2 Z ( t) E fd ~~

ij  
d~~

2f 
d~~

3j 
dq 4 e e

- a ( q 2 -q 3) - a (q 3-q 4 )
e e f ( q 1) f ( q 2 ) f ( q 3) f ( q 4 ) Z ( q 4 )

t q 1 q 2 - a ( t - q 1) - a ( t -p 1)
+ 2 Ef d ~~1j 

d~~
1f 

d~~
7f 

dq 3~ e e -

- a (q 1-q2 ) -a ( q 2 -q 3)
e. e f ( p 1) f ( q 1) f  (q 2 ) f ( q 3) Z ( q 3) Z ( p 1)

t p 1 - a ( t - p 1) - a ( t - q 1) 
*

+ E fd ~ ij  d~ 2 fd P if 
dp 2 

e e

- a ( q 1-q 2 ) - a (p 1-p 2 )
e e • f ( p 1) f ( p 2 ) f ( q 1) f ( q 2 ) Z ( q 2 ) Z ( p 2 )

+ ... (14)
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Lqua tions (14) and (8) bot h give c~~’i-es ~; ions for

E {x 2 ( t )  } , so the ri ght hand s ide  of E q u a t i o n  (8)  is an e v a l u a t i o n

of the  se r ies  g iven in ( 1 4 ) .  This  is i m p o r t a nt  because  the  s e r i e s

expansion (similar to E q u a t i o n  ( 1 4 ) )  for  the  second order  sys t em

c o n s i d e r e d  n e x t  can be bounded t er m w i s e  by the  r i ght  hand s ide  of

E q u a t i o n  ( 14 ) .  T h e r e f o r e , E q u a t i o n  (9)  can be emp loyed as a

s t a b i l i t y  c r i t e r i o n  for  the second order  s y st e m , bu t now only

as a suffi c ient condit ion.

For the remainder of t h i s  sect ion , we will be considering

the sys tem

1~i (t ) 1 10 1 11xi (t)1 101
I = I II I + I I g(t)x1(t) (15)

Jz2 (t ) i  L-i 2~ JLx 2(t)J L1J

x(0) = x

y(t) = [0, 1] x(t) (16)

Also we will assume that ‘.-;e are interested only in the stability

of x1(t). From System (15) we will define the matrices

10 11 101
A = b = ( c = [1 , 0] ( 17)

L- i -2~J Ll J

it is also convenient to define

r(t) 0At X 0 (18)

_ _ _ _ _  - ____ _ _ _ _ _ _ _ _
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and le t g( t) be a s tat ionary c ol or ed noise proce ss , Gaussian with

zero mean , variance 0
g

2 and autocorrelation function

Rg(t) = 0g
2 e ’a l n I (19)

Combining Equat ions (15) through (18), x1 (t) is given

by the integral equation

-r

x 1 (t) = r1(t) +f w~~( t - a ) g ( a ) x 1(c)de (20 )

wh ere

w (t) = cefltb = 
e~~

t 
(e~1~

T
~ t 

- e~ ’~~~
1 t) (21)

2SP~~

* 

Substituting Equation (20) into itself and squaring yields

E{x1(t)} 
= r1

2(t) + terms involving first moments of g

+ E J  f  w ç (t~ q)w ~~(t~ p ) g ( q ) g ( p ) r 1(q) r 1(p )d q dP

+ 2r 1 ( t )  E f  w~ (t- q1)w~ (q1-q 2)g(~ 1)g(q2)r1(q2)dq2dq 1

+ h i gher order terms as in Equation (14) (22)

Turning our attention back to Equation (14), and bringing

the expected value ope ra to r  i n s i d e  the i n t e g r a l s  in  that equation ,

It 

-~~ • — .  -- - ___ 
_ _ _  _ _ _  

__~~:.-. 
~~~~~~~~~~~~~~~~~~ ~.Ia
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~~~: ~ CC that every factor of every term is positive. This allows

us to prove the following theorem .

Theorem_1:

Consider System (15). Suppose there exist two functions

of r, ,  say ~~(ç) and y (~~) and a cons tan t  ~ > 0, such that

r1(t) < ~ ~~~~~~ t c [0, 
~~ ] 

(23) *

and

w~ (t) < y(~ )exp(-8(~ )t) t e [0 , ~‘] 
(24)

Then ,

~~~ E{x
1
2 (t)}  0 if 

2:
~
2 

< (25)

and the convergence will be at an exponential rate , wi th t ime

cons tant -
~~~(~~~) 

+ (2/ a)~~g
2 ~2(~ )•

I’ roof:

Using Equations (23) and (24) in (22) yields

E{x1
2(t)} < o 2z2(t~ + terms involving firs t moments of g

+ o 2
Ef  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 
cI
A 2 ~~~~ (t-q1

) -t3 (1 ) (q1-q 2)
+ 6 2Z ( t) fl J J y ( C) e  e g(q1)

0 0

g(q 1 )g(q 2)Z(q 2)d q2dq 1 + ~Uigher order terms as)

* (26)
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The f a c t o r  6 2 does not i n f l uen c e  the resel r , because the  l i m i t

of the right hand s ide w i l l  be shown to be equal  to ze ro .

Let us now assume the following relations between the

p a r an c t er s  in E q u a t i o n  (14) and those  in Equa t ion  ( 2 6 ) .  Let

f( t) = y (~)g(t) ef = Y
2(~)0g

2 (27)

= a

so that the right hand sides of Equations (26) and (14) are the

same ex cep t for the fac tor 62. Therefore , Equa tion (9), which

says

~~~ E{x2(t)} = 0 if - a + 
2af

2 
<

mus t imply that

~~~ E {x 1
2 (t ) }  = 0 if - B ( ~~) + ~ a~

2 

~
2

(c)  < 0 (28)

T h i s  comple t e s  the proof , and we now direct our attention to

m a k i n g  j ud i c ious  choices for 3 ( c )  and y (~~) .

Optimizing the Choice of 8 and y:

Thcre arc conditions that 8(c) and y ( ç )  must  s a t i s f y

as functions of ~~~. Therefore , we are free to choose 8(c) and

y(~ ) independently for each. value of ~~. The following constrained

• optimization problem can , therefore , be solved in order to

optimize the strength of Theorem 1.

_ _ _  
- ~-~~-

--
~~~~~~~~~~

- - —
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Maxim ize 
~~~~~

- subject to W ç (t) < -y exp(-~ t) for-V

all t c [0, ~].  (29)

The values of 8 and y at which the  maximum is achieved for  each

value of ç form the functions 8(ç) and 6(ç). Using these values

of ~(ç) and 
6(ç) leads to the strongest version of Theorem 1.

The m a x i m i z a t i o n  procedure has been accomplished with a small

compute r  program wh i ch produced the grap hs g iven in Figure 3.

In the literature [9, 10 , 61 there have been a series

of s t a b i l i t y  boundar ies  derived for System (15) tha t  apply  to the

j colored noise case , but none of which depend upon the bandwidth

of the noise. The boundary derived by Infante [1] is the best

of those repor ted , and is superimposed onto Figure 3. Fo r very

low c , the curves given by Equation (28) are parabolic , and , hence ,

grea te r  than the  I n f a n t e  curve for any value of a. However , the

Infante boundary is comparable or better than Theorem 1 for values

of ç U~ to about 8. For wider bandwidths , the new bound a ry is

superior , except for ç corresponding to g r e a t l y  overdamped sys t ems .

Also , our bound considers only E{x1
2(t)}, whereas Infante has used

E{x1
2(t) + x2

2(t)}.

In the literature [7], there have appeared plots of

the mean square stability criteria for System (15) .superimposed

on the criteria for the corresponding white noise parameter

system (Ito sense). This practice is misleading because , in the
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liifan t c case , the bounda ry  is ~ i v ~’n for - ) } . in the Ito
- 

case , the hound is given in terms of Og~~ where  g(t) is whi te

noise w i th au tocorre la t ion func t ion

R g (T) = 0g
2 

6 ( t )

In the following paragraphs the result of Theorem 1 is reca lcu la ted

in such a way that the comparison to the Ito result is justified .

The power spectral density of g(t) corresponding to

Equation (19) is given by:

(2/a) ~ 2
= __________________

g [1 + 
~~~ 

Ia )]

Suppose now that we change the vertical axis on Figure (3), so

that the stability regions are plotted in terms of Sg (O)~ If

we do this , all the graphs scale into the same graph , which is

independent of a. This procedure leads to Figure (4). The da ta

presented in this way indicates how the region of stability

changes as a ~~. I t does no t change ! It  is known tha t  there  are

no Ito correction terms required for System (IS), so the boundary

in  F i gure 4 is also a boundary in the limit as a -‘- 
~~~, i.e., the

white noise case. Superimposed on Figure 4 is the necessary and

sufficient condition for the mean square stability of System (15)

for the white noise case [2]. We see that as ç2 becomes large ,

the boundary of Equation (28) differs from the Ito result by just

~ factor of 2. It is reasonable to expect the two answers  to

di ffer by such an amount because the inequa Lity (24) is really

- ~~~~~
.
- ‘,~~~—

~ I -— — 
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- cu:~ :;L~ rv at t t ’ e .  1~e r u m a r 1~ in passIng that the r e su lt  of

Tnf:~nt c can not be superimposed onto Figure (4) because his

result would appear as a straight line whose slope is proportional

to a ’. So as a -‘- ~° , In f a n te ’s boundary  would  approach the hori-

z on tal a x i s .

C l e a r l y , the idea of us ing the resul ts of Sec t ion I I I

for bounding the mean square response of higher order sys tems

ap p l i e s  to more than jus t second order sys tems.  I t works for any

sing le-inpu t , single-output system whose impulse response can be

hounded  by a decayin g exponen tial , and whose noisy parame ter can

be t reated as a feedback gain.

V. CONcLUsION : 
-

We have demons tra ted that  the bandwid th of the colored

nois e process is an impor tan t considera t ion in de te rmin ing  the

stability properties of System (15), and provided a boundary for

- the known reg ion of stability that explicitly involves the bandwidth

of the colored noise. For large (but fini~ e) bandwid th s and f ar

sm a l l  d a m p i n g ,  the resul ts enl ar ged th e previ ou s l y  known re gion of

st ab , I ity for the system considered. Also , th e new bound was

derived in such a way that it remains valid in the limit as the

colored noise parame ter becomes white. Any bound that depends

only on the meazi square value of the noise process will necessarily

fail as the bandwidth becomes arbitrarily large.
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